メッキミシン目(スリット)を設計する方法

Seeed Studio Fusionの場合、製造ファイルでメッキミシン目(スリット)の作る方法は、メッキスルーホール(PTH)に似ています。 つまり、何らかの種類の穴、銅めっき、および銅を露出させるための開口部がなければなりません。 次の簡単な手順でこれを行う方法を示します: 1.ご利用の設計ソフトウェアで、メカニカルレイヤー(GMLまたはGKO)にミシン目(スリット)のアウトラインを描きます。これはメッキ後の穴の最終サイズになります。 正確な寸法を確保するために、アウトラインは基板のアウトラインと同じように、ゼロ幅の線を使用して描画する必要があります(小さな切り抜きのように見えます)。 形状の内側の領域のみが切り取られます。 2.両面の銅箔パッタンレイヤ(GTL、GBLおよびその他の銅箔パッタンレイヤ)で、同じミシン目(スリット)を描きますが、メカニカルレイヤのスリットよりも少なくとも0.1 mm(約4mil)大きくします。 露出される銅箔の量はご自分の次第です。 3.最後に、ソルダレジストレイヤ(表面と裏面)にミシン目(スリット)開口部を引き、銅パッドよりも少なくとも0.16mm(約6mil)大きくします。 4.他の銅箔パッタンレイヤとソルダレジストレイヤにもこの作業を行うことを忘れないでください。そうすると、メッキミシン目(スリット)を設計しました。   メッキミシン目(スリット)とメッキスルーホールとの違いは、切り抜きの形状です。 通常、NCドリルレイヤにドリルヒットでPTHを示します。 メッキスロットの場合、開口部を切り欠きとして描きます。 一部のコンポーネントライブラリでは、個別のNCミリングレイヤにメッキスロットが生成されますが、NCミリングレイヤをCAMソフトウェアに正しく読み込むことは困難な場合がありますので、推奨しません。 また、塗りつぶされた図形として設計されている場合もありますが、当社のエンジニアは図形の正確な寸法に従わない場合がありますから、ゼロ幅のアウトラインを使用することをお勧めします。 当社の最小のミリング工具は直径0.8mmですので、これよりも小さいミシン目(スリット)が必要な場合は、ドリル穴を重ねて列として設計し、それらをNCドリルレイヤに入れてください。

詳しくへ

回路基板を設計する方法

初心者にとって、回路基板の設計方法をにつけるのは素晴らしいことです。 ここでは、7つの過程をまとめて、回路基板の設計方法に関する大まかな概念を理解するのに役立つと思います。 1.事前設計 事前設計には、コンポライブラリと回路図を準備しておきます。基板設計を進める前に、回路図のSCHコンポライブラリと基板のコンポパッケージを準備する必要があります。 エンジニアから標準サイズのライブラリを設計する方が良いです。 一般的には、基板コンポパッケージライブラリを確立した後、SCHコンポーネントライブラリを確立します。 基板コンポのパッケージライブラリは、基板実装に直接影響を与えるため、厳しい条件があります。 独自のライブラリを作成するより、コンポが在庫あるライブラリを利用する方がいいです。 Seeed Fusionのように、部品リストとEagleライブラリとKicadライブラリを提供するので、プロセスが簡単になります。 回路図のSCHコンポライブラリの条件は比較的に緩いですが、ピン特性の定義と基板コンポパッケージライブラリの対応に注意してください。 事前設計を完成して、次の6ステップを続きたくない場合は、FusionレイアウトサービスページでSCHをアップロードして、設計にかかる費用が即時に出てきます。(生産の準備ができている設計) 2. 基板の構造設計 基板のサイズと機械的な位置に応じて、基板設計環境で基板の枠を引き出し、必要なコネクタ、ボタン/スイッチ、ネジ穴、実装穴などを位置決め要件に従って配置します。 配線領域と非配線領域(非配線領域の周囲のネジ穴の範囲など)を十分に検討して決定します。 3. PCBレイアウト設計 レイアウト設計では、基板の枠の設計要件に従ってコンポを配置します。回路図ツールでネットワークテーブル(設計→ネットリスト作成)を作成して、ネットワークテーブル(設計→インポートネットリスト)をPCBソフトウェアにインポートします。その後、ネットワークテーブルはソフトウェアの背景に存在し、配置操作によって接続できるライン候補間のすべてのコンポおよびピンを呼び出すことができ、次にコンポに基づいてレイアウト設計を行うことができます。 PCBレイアウト設計は、基板設計プロセスの最初の重要なプロセスであり、基板が複雑になればなるほど、後の配線を実現するための難易度に直接影響するため、より良いレイアウトが要求されます。 レイアウト設計は、回路設計者の基礎と豊富な設計経験に依存しているため、回路設計者に厳しい条件があります。首位の回路設計者は、小型モジュールレイアウト設計または難解なPCBレイアウト設計に適しています。 4. 基板配線設計 配線設計は基板設計プロセスで最大の作業負荷を持ち、PCB基板の性能に直接影響します。 PCB設計プロセスでは、配線には一般に3つの部分があります。まずはクロスパスで、回路基板設計の基本です。 次は標準的な基板の測定である電気性能の表現です。配線後、電気性能が最もよくなるため配線を調整します。 最後はきれいで美しいです。混沌とした配線は、電気性能が許容可能であっても、後の改善やテストやメンテナンスに不便をもたらします。 5.レイアウトとシルクの改善 “もっと優れた基板設計があります”、 “基板設計は欠陥のある芸術品です”、これは主に基板設計がハードウェア設計の要件を満たす必要があるからです。ただし、特定の要件の間に異なる競合が存在する可能性があります。…

詳しくへ